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Abstract—In this paper we describe a method for detecting 

buried objects of interest using a forward looking infrared 

camera (FLIR) installed on a moving vehicle. Infrared (IR) 

detection of buried targets is based on the thermal gradient 

between the object and the surrounding soil. The processing of 

FILR images consists in a spot-finding procedure that includes 

edge detection, opening and closing. Each spot is then described 

using texture features such as histogram of gradients (HOG) and 

local binary patterns (LBP) and assigned a target confidence 

using a support vector machine (SVM) classifier. Next, each spot 

together with its confidence is projected and summed in the UTM 

space. To validate our approach, we present results obtained on 6 

one mile long runs recorded with a long wave IR (LWIR) camera 

installed on a moving vehicle.  

Keywords-forward looking infrared imaging; FLIR; IR; SVM; 

mathematical morphology; HOG; LBP 

I.  INTRODUCTION 

Detection of buried targets continues to represent a 
challenging problem and multiple sensing modalities such as 
ground penetrating radar, metal detectors and infrared (IR) 
have been employed to address it. Among the variety sensors 
used to detect buried objects, IR is gaining in popularity due to 
the recent advances in un-cooled camera technology and 
multiband sensors.  

Infrared cameras have been used in a variety of applications 

such as ground target recognition [1, 2], flying target tracking 

[3], remote sensing [4] and landmine detection [5-9]. IR object 

detection is based on the temperature difference between the 

target and the surrounding background. More specifically, the 

detection of buried objects is based on differences in soil 

texture, spectral composition and temperature between the 

area above the target and background [5].  

In this paper we use a long wave IR (LWIR) camera installed 

in front of a vehicle (see Fig. 1) to detect objects buried in the 

road ahead. The vehicle drives on a road that has buried 

targets which exhibit certain IR signatures. Our goal is to cue 

the driver for possible buried objects of interest. While our 

ultimate goal is to cue the driver in real time, in this paper we 

present only a retrospective (offline) IR video processing 

methodology. 

 

Figure 1.  LWIR camera mounted in front of a moving vehicle to detect 

buried targets based on their IR signature 

In previous papers [7-9] we presented several solutions to 

this problem. Our overall approach to FLIR detection has been 

to develop multiple target finder algorithms and then use 

classifier fusion in order to reduce the false alarm rate. The 

method presented in this paper extends the work presented in 

[9] and tries to address two challenges previously encountered 

which are the variability of the IR signature with the time of 

the day and the time fusion algorithm. The variability of the 

target signature is demonstrated in Fig. 2 and consists in the 

fact that both target and non-target signatures look differently 

depending on the time of the day and the outside temperature. 

For example, in the image from Fig. 2.a (taken at 11 am) the 

target is lighter than the background whereas in Fig 2.b (taken 

at 7 am) the opposite is true.  

 

a)                                                                b) 

Figure 2.  Typical vehicle mounted IR images taken at different time of the 

day: a) at 11 am, b) at 7 am 

To address this challenge we propose in this paper a spot 

detection algorithm based on the Canny edge detector and 

mathematical morphology. Mathematical morphology was 

previously used in target recognition problems [10, 11].  

The second challenge is represented by the necessity to 

correlate hits form consecutive frames. Here, a time fusion 
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algorithm is required in order to recognize that hits from 

consecutive frames might represent the same object. In this 

paper we propose a temporal fusion methodology that projects 

the hits in the Universal Traverse Mercator (UTM) real road 

coordinates. 

The rest of the paper is structured as follows: in section 2 

we present the available dataset, in section 3 we describe the 

entire algorithm used for buried target detection, section 4 

shows results obtained on the available datasets and in section 

5 we provide conclusions and future work. 

II. AVAILABLE DATASET 

The data used in this paper was collected on a country road 
about one mile long with a LWIR camera installed on a car 
(see Fig. 1). The road had 50 buried targets. We collected data 
from 6 runs on the one mile road. Typical frames from the 
collected movies are shown in Fig. 2. We can see two targets in 
Fig. 2.a and one target in Fig. 2.b. It is interesting to note that, 
since the two frames were taken at different time of the day, 
not only the target signatures differ between them but also the 
sky and the left roadside berm appearance. 

Each run had a frame level ground truth, that is the (x,y) 
location in each frame of each of the 50 buried targets. If the 
detected spot (see next section) in a given frame had a ground 
truth located in its bounding box, it was declared a hit; 
otherwise it was declared a false alarm. The UTM location of 
the 50 buried targets was also known. 

III. BURIED TARGET DETECTION ALGORITHM 

The buried target detection algorithm has four parts: spot 
detection, spot classification, temporal fusion and scoring. 

A. Spot detection algorithm 

The main steps of the spot finding algorithm are: 

1. Find edges. Apply Canny edge detector to each IR 
frame. Sample output for this step is shown in Fig. 3.a where a 
target can be seen. The trapezoidal shape present in Fig. 3.a is 
an artifact of the fixed road map used for spot search. A 
dynamic road map based on road finding algorithm is presented 
in [12]. 

 

a. Canny edge detector b. Closing-Opening 

Figure 3.  Two steps of the spot finding algorithm 

2. Close. Apply morphological closing with a 311 
structuring element, SE. 

Morphological binary image processing has two 
fundamental operations: erosion and dilation. If we denote by 
A the set of non-zero pixels of a binary image I, we can define 

the erosion of image I by structuring element (kernel) SE as the 
locus of the center of SE when this moves inside A. 
Essentially, as a result of erosion a binary shape A present in I 
becomes “skinnier”. Conversely, dilation of I by SE is defined 
as the locus of all point in SE when the center of SE moves 
inside A. Consequently, as a result of dilation a binary shape A 
becomes “fatter”. Using these two fundamental operations we 
can define other morphological operators such as closing, 
Closing(I, SE)=Erosion(Dilation, SE), SE), and opening, 
Opening(I, SE)=Dilation(Erosion, SE), SE). Note that while 
after erosion and dilation the size of the shape changes, after 
opening and closing the “desired” objects (targets in our case) 
remain unchanged in size. Intuitively, closing has the role of 
closing holes smaller than SE, while opening has the role of 
removing objects smaller than SE. In our case, in step 2 we 
close all contours that might belong to targets. Note in Fig. 3.a 
how two closed contours were found: one produced by a target 
and another one by a false alarm. 

3. Open. Apply morphological opening with the same SE 
to remove noise smaller than SE. Sample output is shown in 
Fig. 3.b. Note how the trapezoidal artifact and all other open 
contours (lines) was removed by opening. 

4. Connected components. Find the connected 
components in the image and compute various properties for 
each of them such as bounding box, centroid, orientation, etc. 
Of special importance is finding the bounding box that will 
next be used to compute the spot features. This is an important 
property of the proposed algorithm and distinguishes this paper 
from [9] where the window used for feature computation was 
fixed and determined by trial-and-error. 

B. Spot classification 

The spot classification procedure has the following steps: 

1. Feature extraction. For each spot we computed local 
binary pattern (LBP) [13] and histogram of oriented gradients 
(HOG) features.  

LBP is a texture descriptor defined on P neighbors situated at 
radius R from a center pixel, C=(xc, yc). If the center pixel C 
has a gray level denoted by gc, then its LPBP,R value is: 

            
   

   
     

 , s(x≥0)=1, s(x<0)=0,     (5) 

where gi are the gray levels of its P neighbors. In other words, 
the P neighbors are assigned a value of 0 or 1, depending 
whether are smaller or greater than C, respectively. The 
resulting bit pattern is then mapped into a number. In our case, 
we use R=1 and P=8 which results in possible LPB values 
between 0 and 255. To represent a spot hit by LPB features we 
simply compute the histogram of all the LPB values obtained 
for the pixels in its bounding box related to its centroid, C. If 
we used all LPB values, the histogram (hence the feature space 
dimension) will have 256 bins. However, if we only use the 
uniform LPB patterns (patterns that have at most two 0-1 or 1-0 
transitions) from the 256 possible ones, the feature space 
reduces to dimension 59 (number used in this paper). 

HOG is a texture descriptor that computes the occurrences 
of gradient orientation in a given image region. The gradient of 
the region is computed by filtering the image with a [-1,0,1]  
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Figure 4.  Typical UTM map output of the spot temporal fusion procedure (targets denoted by circles, bright spot denotes target confidence) 

 

kernel to get the horizontal gradients and with a [-1,0,1]
t
 for the 

vertical ones. Then the region is divided in HV cells and a 
histogram with B bins is computed in each cell. The final HOG 
descriptor of the region is obtained by the concatenation of the 
histograms obtained in all cells. In our case we chose H=3, V=3 
and B=9 resulting a HOG features vector of size 81 to describe 
each bounding box. The total number of features was 140. 

2. Spot classification. We used a leave-one-out procedure 
to train a support vector machine (SVM) to compute the 

confidence that a spot i is a target in frame j, cij[0,1] i[1,Nj] 

and j[1,M] where Nj is the number of spots found in frame j 
and M and the total number of frames (between 4000 and 
6000). More specifically, we trained an SVM with the hits 
from 5 runs and then test the resulting model on the sixth run. 
We employed the MATLAB implementation of the LIBSVM 
library [15] in our experiments. 

C. C. Temporal fusion of the image (frame) spots 

After we compute the confidences cij that spots in frame j 
are targets, we project each spot together with its confidence in 
the UTM space. 

The projection procedure is detailed in [7] and it is based on 
finding a mapping between the image space and UTM space. A 
typical output map of the projection procedure is shown in Fig. 
4. The ground truth is marked with (red) circles whereas the 
bright areas denote aggregated spots. The grid used to produce 

the UTM image is 0.1m0.1m, which means that the image 
shown in Fig. 4 corresponds to a surface 6 m wide and about 
1,200 m long.  

D. Scoring procedure 

The scoring was performed on UTM maps similar to the 
one shown in Fig. 4. The main steps of the scoring procedures 
are: 

1. Thresholding. Threshold the UTM map, O, with a value 

T (min(O) , max(O)). For example, for the map shown in Fig. 

4, typical thresholds could be T (0, 200). 

2. Closing. Each UTM spot might have multiple local 
maxima that become disconnected when thresholding is 
applied. To reconnect the parts of the same spot we apply a 
closing procedure similar to the one from section III.A.2. 

3. Connected components. Apply a connected components 
procedure to the thresholded O, say NC UTM spots are 
detected. 

4. Compute DR and FAR. Count hits, d, that are in a 
radius of HALO=0.5m from the UTM ground truth location, 
and compute the detection rate DR=d/50 and false alarm rate 
FAR=(NC-d)/Area(O). 

5. Compute ROC. Compute a receiver operator 
characteristic (ROC) curve by choosing various thresholds T 
and repeating steps 2-4 given above. 

IV. RESULTS 

Applying the algorithms described in the previous section 
we obtained the following results on the 6 runs mentioned in 
section II. 

A. Spot extraction and temporal fusion results 

In comparison to our previous work [9], here we changed 
target representation from corners to spots (section III.A) and 
the temporal fusion procedure based on the mean shift 
algorithm [7] by the one described in section III.C. In Fig. 5 we 
compare the results obtained with the new and the old [9] 
approach for two of the runs from our dataset. 

 

Figure 5.  Comparison between spot based temporal fusion (New) and the 
mean shift approach [7] (Old) for two runs 

From Fig. 5 we see that the new approach (dotted lines) 
produces greatly improved the results. There are multiple 
reasons for this drastic improvement. First, the corner 
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representation of targets while suitable for image registration, 
introduce too many false alarms in target recognition problems. 
The reason is that many times, a target may have multiple 
corners selected as possible candidate hits, some of them being 
far from the ground truth location. Second, when corners are 
considered, it is hard to choose a window for feature extraction 
around a corner that accounts for image perspective. Third, the 
new temporal spot merging approach is more forgiving and less 
prone to false alarms like the one based on mean shift. 

B. The choice of SVM kernel 

Many times, when SVM are used, only the default (linear 
or polynomial) kernels are investigated. In Fig. 6 we show the 
results on two of the available runs for two choice of SVM 
kernel: linear and radial basis function (RBF). As we can see 
from Fig. 6, the change from linear (solid line) to RBF kernel 
(dotted) produced a significant performance improvement.  

 

Figure 6.  Comparison between a linear and a RBF kernel. 

C. Results for the entire dataset 

The results for the entire dataset are presented in Fig. 7. The 
results were obtained using a leave-one-run-out cross-
validation approach (train on 5 runs and test on the 6

th
). 

 

Figure 7.  Results on the entire dataset 

From Fig. 7 we see that we obtained at least 80% detection 
at a FAR of 0.02 1/m

2
. We mention that a human observer that 

scored several of the runs without having any knowledge about 
the ground truth obtained around 80% detection and no false 
alarms hence there is still room for improvement in false alarm 

reduction. Even if the results obtained are reasonable, they are 
not uniform across the entire dataset (see the red line 
“2010_02_26_11_48_063_E”) for reasons that we are not 
entirely sure. However, the good news is that neither the time 
of the day or the humidity of the run (last three runs were 
recorded after rain) seem to be the cause for the decrease in 
performance. 

V. CONCLUSIONS 

In this paper we presented a buried target recognition 
algorithm for FLIR imagery based on mathematical 
morphology and support vector machines. We found that the 
temporal fusion algorithm of the individual frame hits is very 
important for increasing the detection performance. Employing 
a radial basis function kernel may also lead to significant 
increase in classification performance if enough data is 
available. On a set of 6 one mile long runs we obtained a 
performance of about 80% detection at a FAR=0.02 1/m

2
. 
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