
Distribution Statement A: Approved for public release; distribution is unlimited.

Using evolutionary computation to optimize an SVM used in detecting

buried objects in FLIR imagery
Alex Paino, Mihail Popescu, James M. Keller, Kevin Stone

atpgh6@missouri.edu, popescum@mail.missouri.edu, kellerj@mail.missouri.edu,

kes25c@missouri.edu
Electrical and Computer Engineering Dept.

University of Missouri,

Columbia, Missouri, USA

ABSTRACT
In this paper we describe an approach for optimizing the parameters of a Support Vector Machine (SVM) as part of an

algorithm used to detect buried objects in forward looking infrared (FLIR) imagery captured by a camera installed on a

moving vehicle. The overall algorithm consists of a spot-finding procedure (to look for potential targets) followed by the

extraction of several features from the neighborhood of each spot. The features include local binary pattern (LBP) and

histogram of oriented gradients (HOG) as these are good at detecting texture classes. Finally, we project and sum each

hit into UTM space along with its confidence value (obtained from the SVM), producing a confidence map for ROC

analysis. In this work, we use an Evolutionary Computation Algorithm (ECA) to optimize various parameters involved

in the system, such as the combination of features used, parameters on the Canny edge detector, the SVM kernel, and

various HOG and LBP parameters. To validate our approach, we compare results obtained from an SVM using

parameters obtained through our ECA technique with those previously selected by hand through several iterations of

“guess and check”.

Keywords: forward looking infrared imaging; FLIR; IR; SVM; mathematical morphology; HOG; LBP; evolutionary computation

1 INTRODUCTION

Detection of buried targets continues to represent a challenging problem and multiple sensing modalities such as
ground penetrating radar, metal detectors and infrared (IR) have been employed to address it. Among the variety of
sensors used to detect buried objects, IR is gaining in popularity due to the recent advances in un-cooled camera
technology and multiband sensors.

Infrared cameras have been used in a variety of applications such as ground target recognition [1, 2], flying target
tracking [3], remote sensing [4] and landmine detection [5-9]. IR object detection is based on the temperature difference
between the target and the surrounding background. More specifically, the detection of buried objects is based on
differences in soil texture, spectral composition and temperature between the area above the target and background [5].

Figure 1. LWIR camera mounted in front of a moving vehicle to detect buried targets based on their IR signature

In this paper we use a long wave IR (LWIR) camera installed on a vehicle (see Fig. 1) to detect objects buried in the
road ahead. The vehicle drives on a road that has buried targets which exhibit certain IR signatures (see Fig. 2 for example
images). Our goal is to cue the driver for possible buried objects of interest. While our ultimate goal is to cue the driver in
real time, in this paper we present only a retrospective (offline) IR video processing methodology.

a) b)

Figure 2. Typical vehicle mounted IR images taken at different time of the day: a) at 11 am, b) at 7 am

In previous papers [7-9] we presented several approaches to solve this problem. Our most recent effort [16] involved

implementing a temporal fusion approach that projected hits in the Universal Traverse Mercator (UTM) world

coordinates, where the hits are found by a spot-finding procedure on the LWIR image and classified by a Support Vector

Machine (SVM). An example of the output from the temporal fusion approach can be seen in Fig. 4. Adding the

temporal fusion aspect to our algorithm allowed us to achieve a significant performance increase in terms of the

probability of detection of our algorithm. However, up until now we selected parameters to various algorithms via a

“guess and check” method, or by settling for the default arguments. Thus, we felt that we may be able to improve our

algorithm by optimizing these parameters in a systematic, automatic way. As the algorithm has grown in complexity, so

too has the number of parameters it requires. When combined with the complexity of our algorithm and the significant

computational power it requires to run, the large number of parameters ruled out using a more traditional parameter

optimization approach such as grid search. Thus, we had to develop another method to optimize them.

We decided to use an Evolutionary Computation Algorithm (ECA) for this task, as it is an efficient way to optimize a

complex algorithm with many inter-related parameters, such as ours. We break our optimization process up into two

parts: one for parameters related to the spot-finding procedure, and one for the parameters related to the Support Vector

Machine (SVM) classifier and Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) feature

extraction algorithms. Both of these segments utilize the same base algorithm, but with different objective functions.

The rest of the paper is structured as follows: in section 2 we present the available dataset, in section 3 we describe

the entire algorithm used for buried target detection, in section 4 we describe the evolutionary computation algorithm

used to automatically optimize parameters to our algorithm, in section 5 we discuss results obtained on the available

datasets and in section 6 we provide conclusions.

2 AVAILABLE DATASET

The data used in this paper was collected at an arid United States Army Test Site with a LWIR camera installed on a
vehicle (see Fig. 1). The 1200 meter lane had 50 buried targets. We collected data from 7 runs on the lane. Typical frames
from the collected movies are shown in Fig. 2. We can see two targets in Fig. 2.a and one target in Fig. 2.b. It is interesting
to note that, since the two frames were taken at different time of the day, not only the target signatures differ between
them but so also does the sky and the left roadside berm appearance.

Each run had a frame level ground truth, that is the (x,y) location in each frame of each of the 50 buried targets. If the
detected spot (see next section) in a given frame had a ground truth located in its bounding box, it was declared a hit;
otherwise it was declared a false alarm. The UTM location of the 50 buried targets was also known.

3 BURIED TARGET DETECTION ALGORITHM

The buried target detection algorithm has four parts: anomaly detection, classification, temporal fusion and scoring.

3.1 Prescreener Algorithm

The main steps of the prescreener algorithm are:

1. Find Edges. Apply Canny edge detector to each IR frame. Sample output for this step is shown in Fig. 3.a where a
target can be seen. The trapezoidal shape present in Fig. 3.a is an artifact of the fixed road map used for spot search. A
dynamic road map based on a road finding algorithm is presented in [12].

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

0

50

100

150

200

250

Target A

Target B

755

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Target B

a. Canny edge detector b. Closing-Opening

Figure 3. Two steps of the spot finding algorithm

2. Close. Apply morphological closing with a 311 structuring element, SE.

Morphological binary image processing has two fundamental operations: erosion and dilation. If we denote by A the
set of non-zero pixels of a binary image I, we can define the erosion of image I by structuring element (kernel) SE as the
locus of the center of SE when SE itself moves inside A. Essentially, as a result of erosion a binary shape A present in I
becomes “skinnier”. Conversely, dilation of I by SE is defined as the locus of all point in SE when the center of SE moves
inside A. Consequently, as a result of dilation, a binary shape A becomes “fatter”. Using these two fundamental operations
we can define other morphological operators such as closing, Closing(I, SE)=Erosion(Dilation(I, SE), SE), and opening,
Opening(I, SE)=Dilation(Erosion(I, SE), SE). Note that while after erosion and dilation the size of the shape changes,
after opening and closing the “desired” objects (targets in our case) should remain unchanged in size. Intuitively, closing
has the role of closing holes smaller than SE, while opening has the role of removing objects smaller than SE. In our case,
in step 2 we close all contours that might belong to targets. Note in Fig. 3.a how two closed contours were found: one
produced by a target and another one by a false alarm.

3. Open. Apply morphological opening with the same SE to remove noise smaller than SE. Sample output is shown in
Fig. 3.b. Note how the trapezoidal artifact and all other open contours (lines) were removed by opening.

4. Connected Components. Find the connected components in the image and compute various properties for each of
them such as bounding box, centroid, orientation, etc. Of special importance is finding the bounding box that will next be
used to compute the anomaly’s features. This is an important property of the proposed algorithm and distinguishes this
paper from [9] where the window used for feature computation was fixed and determined by trial-and-error.

3.2 Classification

The spot classification procedure has the following steps:

1. Feature extraction. For each alarm we computed local binary pattern (LBP) [13] and histogram of oriented
gradients (HOG) feature.

 LBP is a texture descriptor defined on P neighbors situated at radius R from a center pixel, C=(xc, yc). If the center
pixel C has a gray level denoted by gc, then its LPBP,R value is:

LBP(C) = ∑ s(gi
𝑃−1

𝑖=0
− gc)2

i, s(x≥0)=1, s(x<0)=0, (5)

where gi are the gray levels of its P neighbors. In other words, the P neighbors are assigned a value of 0 or 1
depending on whether they are smaller or greater than C, respectively. The resulting bit pattern is then mapped into a
number. In our case, we use R=1 and P=8 which results in possible LBP values between 0 and 255. To represent a hit by
LBP features we simply compute the histogram of all the LBP values obtained for the pixels in its bounding box related to
its centroid, C. If we used all LBP values, the histogram (hence the feature space dimension) will have 256 bins. However,
if we only use the uniform LBP patterns (patterns that have at most two 0-1 or 1-0 transitions) from the 256 possible ones,
the feature space reduces to dimension 59 (number used in this paper).

 HOG is a texture descriptor that computes the occurrences of gradient orientation in a given image region. The
gradient of the region is computed by filtering the image with a [-1,0,1] kernel to get the horizontal magnitude of the

gradients and with a [-1,0,1]t for the vertical magnitudes. We begin by dividing the region into HV cells and then creating
a histogram with B bins for each cell. To compute the histograms, we first calculate the gradient for each pixel in the cell
and then increment the bin corresponding to the orientation of the gradient by the magnitude of the gradient. The final
HOG descriptor of the region is obtained by the concatenation of the histograms obtained in all cells. In our case we chose

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Target

H=3, V=3 and B=9 resulting in a HOG features vector of size 81 to describe each bounding box. The total number of
features was 140.

2. Classifier. We use a leave-one-out procedure to train a support vector machine (SVM) to compute the confidence

that a spot i is a target in frame j, cij[0,1] i[1,Nj] and j[1,M] where Nj is the number of spots found in frame j and M
and the total number of frames (between 4000 and 6000). More specifically, we train an SVM with the hits from 6 runs
and then test the resulting model on the seventh run. We employed the MATLAB implementation of the LIBSVM library
[15] in our experiments.

3.3 Temporal Fusion of the Image (frame) Alarms

After we compute the confidences cij that spots in frame j are targets, we project each spot together with its confidence
in the UTM space.

 The projection procedure is detailed in [7] and it is based on finding a mapping between the image space and UTM
space. A typical output map of the projection procedure is shown in Fig. 4. The ground truth is marked with (red) circles

whereas the bright areas denote aggregated spots. The grid used to produce the UTM image is 0.1m  0.1m, which means
that the image shown in Fig. 4 corresponds to a surface 6 m wide and about 1,200 m long.

3.4 Scoring Procedure

The scoring was performed on UTM maps similar to the one shown in Fig. 4. The main steps of the scoring
procedures are:

1. Thresholding. Threshold the UTM map, O, with a value T (min(O) , max(O)). For example, for the map shown in

Fig. 4, typical thresholds could be T (0, 200).

Figure 4. Typical UTM map output of the spot temporal fusion procedure (targets denoted by circles, intensity represents

confidence)

2. Closing. Each UTM spot might have multiple local maxima that become disconnected when thresholding is
applied. To reconnect the parts of the same spot we apply a closing procedure similar to the one from section III.A.2.

3. Connected Components. Apply a connected components procedure to the thresholded O, say NC UTM spots are
detected.

4. Compute PD and FAR. Count hits, d, that are in a radius of HALO from the UTM ground truth location, and
compute the probability of detection PD=d/50 and false alarm rate FAR=(NC-d)/Area(O).

5. Compute ROC. Compute a receiver operator characteristic (ROC) curve by choosing various thresholds T and
repeating steps 2-4 given above.

4 EVOLUTIONARY COMPUTATION ALGORITHM

 The task of optimizing parameters to our algorithm is broken down into two parts: one for optimizing LBP, SVM,

and HOG parameters, and one for optimizing the Canny Edge detector parameters. This is so that we can perform the

optimization of the parameters for the detection process separately from the optimization of the classification process

parameters. The reason for breaking the optimization task down this way is to reduce the number of parameters being

optimized by each ECA, allowing us to run each ECA for a lower number of generations before convergence occurs.

Additionally, breaking up the optimization task greatly reduces the run time of the fitness function for each ECA, which

is important to us because the algorithms were tested on a simple 3.0GHz Intel Core Quad system.

2000 4000 6000 8000 10000 12000

10

20

30

40

50

60 0

20

40

60

80

100

120

140

160

180

200

4.1 Structure of Evolutionary Algorithm

The primary steps of the algorithm are:

 1. Initialize Population. In this step we create a population of chromosomes, where each chromosome represents a

set of parameters. This involves randomly generating each parameter in the chromosome while constraining each

parameter to only valid values.

 2. Evaluate Fitness. Here we evaluate the performance of each chromosome in our population by applying a fitness

function. The fitness function is different for the two stages, but they both produce a fitness value in the interval [0, 1]

for each chromosome.

 3. Sort Population. We sort the population in descending order in terms of their fitness values.

 4. Crossover. We look at each chromosome in the top half of the population and use it as a parent in a crossover

operation with probability PROB_X, which is given as a parameter to the algorithm. We tested values of .5, .7 and .9 for

PROB_X. We then will choose a second parent through round-robin selection across the entire population of

chromosomes. We then create two new chromosomes by blending the parameters of the two parents previously selected.

We blend each parameter by first choosing a blend factor from a uniform distribution over [0, 1] and then using the

blend factor in the equations:

𝑐ℎ𝑖𝑙𝑑1. 𝑝𝑎𝑟𝑎𝑚 = 𝑏𝑙𝑒𝑛𝑑 × 𝑝𝑎𝑟𝑒𝑛𝑡1. 𝑝𝑎𝑟𝑎𝑚 + (1 − 𝑏𝑙𝑒𝑛𝑑) × 𝑝𝑎𝑟𝑒𝑛𝑡2. 𝑝𝑎𝑟𝑎𝑚

𝑐ℎ𝑖𝑙𝑑2. 𝑝𝑎𝑟𝑎𝑚 = 𝑏𝑙𝑒𝑛𝑑 × 𝑝𝑎𝑟𝑒𝑛𝑡2. 𝑝𝑎𝑟𝑎𝑚 + (1 − 𝑏𝑙𝑒𝑛𝑑) × 𝑝𝑎𝑟𝑒𝑛𝑡1. 𝑝𝑎𝑟𝑎𝑚

If the parameters are discrete, then rounding must be performed as well. Once the new children have been initialized,

they then replace two chromosomes that are in the bottom half of our population.

 5. Mutation. Here we iterate over our population of chromosomes and mutate each chromosome with probability

PROB_M, which is given as a parameter to the algorithm. We tested values of .01, .1, and .25 for PROB_M. If a

chromosome is selected for mutation, we then slightly alter each of its parameters. If the parameter is a discrete variable,

this entails incrementing or decrementing its value (both with equal probability). Otherwise, we scale the variable by a

random value from [.5, 1.5].

 6. Iteration. Repeat steps 2 through 5 for NUM_GENERATIONS, which again is given as a parameter to the

algorithm. The value used here was determined based on the run-time of the ECA’s.

4.2 LBP, HOG, and SVM Parameter Optimization

 In order to evaluate the fitness of a set of parameters to the LBP, HOG, and SVM algorithms efficiently, we built a

collection of images cropped to contain the image inside each bounding box produced by the prescreener. This collection

consists of 5 times as many false alarms as true targets, and was constricted to containing 1000 images from one data-

collection run. Each image is of a distinct cluster on the lane.

 Using this collection of images, we are then able to efficiently calculate the effectiveness of the chromosomes’

parameters by training an SVM using 70% of the samples and then testing the SVM on the remaining 30%. The fitness

value for a chromosome is defined as the percentage of the samples that were correctly classified by the SVM.

 The parameters being optimized in this ECA include the SVM kernel type, the degree of the SVM, the number of

windows on the X-axis for the HOG, the number of windows on the Y-axis for the HOG, the number of bins for the

HOG, the LBP radius, the number of points to sample for the LBP, the mode of the LBP (either histogram or normalized

histogram), and the feature flag, which specifies what combination of LBP and HOG features to use. The parameters we

were using before optimization are given in Fig. 5.

Figure 5. Default parameters to LBP, HOG, and SVM algorithms. A feature flag of 0 specifices the usage of both LBP and

HOG features, while an SVM kernel of 2 specifies the radial-basis function (RBF) kernel. Also, an LBP mode of ‘h’

specifies to use a histogram.

4.3 Canny Edge Detector Parameter Optimization

 We begin the evaluation of the fitness of the Canny edge detector parameters by running the prescreener through one

data-collection run, keeping track of the number of positive detections (bounding boxes with a target in them), negative

detections (boxes with no target), and total true targets (incremented every time there is a mine in the view of the frame).

We then combined these three values to produce a single fitness value. This combination proved to be difficult, and the

different approaches we took are detailed in the results section.

 The parameters being optimized in this ECA include the upper and lower thresholds to the Canny edge detector

along with the standard deviation of the Gaussian filter used. For reference, the parameters being used before are given

in Fig. 6.

Figure 6. Default parameters to Canny edge detector. Sigma is the standard deviation being used by the Gaussian filter.

5 RESULTS

Applying the algorithms described in the previous section we obtained the following results, where each ROC curve
shown has been produced using the same data run.

5.1 LBP, HOG, and SVM Parameter Optimization Results

We ran our Evolutionary Computation Algorithm for various values of PROB_X and PROB_M and obtained the

results for average fitness per generation, Fig. 7, and max fitness per generation, Fig. 8.

Figure 7. Average fitness of chromosome population per generation of LBP, HOG, and SVM parameter optimization.

Several runs of the algorithm are plotted, with varying probabilities of mutation and crossover.

Figure 8. Maximum fitness of chromosome population per generation of LBP, HOG and SVM parameter otpimization

Several runs of the algorithm are plotted, with varying probabilities of mutation and crossover.

 These graphs demonstrate a few things. First, we can see that the Evolutionary Algorithm is working as expected

since the average fitness gradually converges to the top fitness for each run of the algorithm. Additionally, the average

fitness curve for the runs with a higher crossover probability (PROB_X=.9) converge more quickly on the maximum

fitness attained for that run, while the runs with a higher mutation probability (PROB_M=.1) are less smooth, which is to

be expected since we are introducing more randomness in these cases.

Figure 9. Evolved parameters (left) vs default parameters (right)

 One interesting part of our results for this ECA is that the optimal parameter set (from the run with PROB_M=.1,

PROB_X=.5) generated several parameters with the same value as the ones we were already using, as can be seen in Fig.

9. Even more surprising is that the Receiver Operating Characteristic (ROC) curve generated by our algorithm is exactly

the same for both of these parameter sets. Thus, the algorithm does not appear to be very sensitive to small changes in its

input parameters, particularly to the HOG and LBP algorithms. The only parameters that appear to be crucial, as they

were shared across all optimized solutions, were that the SVM kernel be an RBF and that both the LBP and HOG

features be used in classification.

5.2 Canny Edge Detector Parameter Optimization Results

 Since we had verified the general ECA was functioning properly in the previous section and had found our specific

implementation of the ECA to perform the best with PROB_M=.1 and PROB_X=.5, we only tested this ECA using

those parameters. We tested our Evolutionary Computation algorithm on this section using several slightly different

fitness functions. We began by specifying the fitness of a chromosome as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠

𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠
×

𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑠

Where trueHits is the number of bounding boxes identified with a mine in them, falseAlarms is the number of bounding

boxes identified without a mine in them, and 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑠 is the total number of targets present in all frames of

the run. This fitness function yielded parameters given in Fig. 10. It is interesting to note that the ratio between the upper

and lower threshold values is 2.07, which falls firmly in the range of 2 to 3 that Dr. Canny recommended in his initial

paper on the Canny edge detector [17].

Figure 10. Evolved parameters after first attempt (left) vs default parameters (right)

Figure 11. Top and Average Fitness values vs. generation for the first fitness function used in the optimization of parameters

for the Canny Edge detector, with PROB_M=.1 and PROB_X=.5.

Figure 12. ROC Curve for parameters shown in Figure 10 versus the ROC curve for our original parameters.

 We then tested our full algorithm using the parameters in Fig. 10. We did this by training our algorithm on 6 runs of

data, and testing on a 7th run. We only ran this ECA for 10 generations due to its fitness function having a longer run

time than the previous ECA, but the ECA still managed to double the top fitness achieved as shown in Fig. 11. Our test

produced the Receiver Operating Characteristic (ROC) curve shown in Fig. 12. As can be seen in Fig. 12, the parameter

set optimized by our first fitness function greatly reduced the number of falseAlarms, allowing for greater probabilities

of detection at lower false alarm rates. We have observed that a human observer that scored this run achieved a

probability of detection of 80% with no false alarms, whereas we achieved a probability of detection of 80% at a false

alarm rate of .004 per square meter. Thus, there is still room for improvement, but these latest results prove promising as

we have been able to reduce the false alarm rate by 50% from our original parameters (at a probability of detection of

80%).

 However, these optimized parameters also reduced the number of trueHits recorded, preventing us from achieving a

probability of detection greater than .9 regardless of the false alarm rate. Thus, we tried again with the following fitness

function, which gives more weight to trueHits:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠

𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠+𝑓𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠
× 𝑠𝑖𝑔𝑚𝑜𝑖𝑑((𝑡𝑟𝑢𝑒𝐻𝑖𝑡𝑠 − 510)/25)

 Here we used a sigmoid function to sharply penalize any results that yielded an amount of trueHits less than 510,

which is the number of trueHits obtained by our original parameter set. The difference is divided by 25 in order to make

the curve slightly smoother, and 25 was chosen so that any result with trueHits < 485 (an unacceptable number of

trueHits) would be reduced by a factor of 0.269, thus more than likely moving it to the bottom half of the population.

This fitness function yielded the parameters given in Fig. 13.

Figure 13. Evolved parameters after second attempt (left) vs first attempt (right)

Figure 14. Top and Average Fitness values vs. generation for the second fitness function used in the optimization of

parameters for the Canny Edge detector, with PROB_M=.1 and PROB_X=.5.

Figure 15. ROC curve comparision across evolved parameter sets.

 We then tested our full algorithm with the new set of optimized parameters, and obtained the ROC curve shown in

Fig. 15. As can be seen, these parameters yielded our best results yet by both improving probability of detection for low

false alarm rates and increasing the maximum probability of detection achieved. Additionally, the system matched the

maximum probability of detection achieved by the default parameters (for reasonable false alarm rates).

6 CONCLUSIONS

 In this paper we outlined a system for detecting buried targets using FLIR imagery and a support vector machine

classifier. We then presented a method of automatically optimizing various parameters to our system using an

evolutionary computation algorithm. Using this algorithm, we found that we were able to reproduce the same results

previously achieved through a “guess and check” method. Additionally, we were able to improve the probability of

detection of our system at low false alarm rates (< 1 per 250 square meters). Hence, this optimization approach can be

used to determine system parameters under varying scenarios and perform as well (or better) than the arduous task of

human trial and error.

7 ACKNOWLEDGMENTS

This Work funded by ARO grant 57940-EV to support U. S. Army RDECOM CERDEC NVESD.

REFERENCES

[1] Li B., Chellapa R., Zheng Q., Der S., Nasrabadi N., Chan L., Wang L., “Experimental Evaluation of FLIR ATR
Approaches—A Comparative Study”, Computer Vision and Image Understanding 84, 5–24 (2001).

[2] Stone, K., Keller, J. M., Popescu, M., Havens, T.C., Ho, K. C., "Forward Looking Anomaly Detection via Fusion of
Infrared and Color Imagery", Proc. of SPIE 7664, 2010.

[3] Yu Y., Guo L., “Infrared Small Moving Target Detection Using Facet Model and Particle Filter”, Proc of 2008
Congress on Image and Signal Processing, pp. 206-210.

[4] Schmuggea,T., French, A., Ritchie, JC, Rango A., Pelgrum H., “Temperature and emissivity separation from
multispectral thermal infrared observations”, Remote Sensing of Environment 79 (2002) 189– 198.

[5] Winter,E. M., Fields,D. J., Carter, M. R., Benett, C. L., Lucey,P. G., Hohnson,J. R., Horton,K. A., and Bowman, A.
P., “Assessment of Techniques for Airborne Infrared Land Mine Detection”, Proc.of the Third International

Airborne Remote Sensing Conference and Exhibition, Copenhagen, Environmental Research Institute of Michigan,
Ann Arbor, Vol. II, 1997, pp. 44-51.

[6] Thanh N.T., Sahli, H., Hao D.N., "Infrared Thermography for Buried Landmine Detection: Inverse Problem
Setting," IEEE Transactions on Geoscience and Remote Sensing, vol.46, no.12, pp.3987-4004, Dec. 2008.

[7] Stone K., Keller M., Popescu M., Spain C.J., “Buried explosive hazard detection using FLIR imagery”, proceedings
of SPIE Defense, Orlando, FL, April 24-29, 2011.

[8] Spain C.J., Popescu M., Keller J., Stone K., “Automatic Detection of targets in medium-wave Infrared Imagery
using adaptive background mixture models”, proceedings of SPIE Defense, Orlando, FL, April 24-29, 2011.

[9] Popescu M., Stone K., Keller J., "Detection of targets in forward-looking infrared imaging using a multiple instance
learning framework", proceedings of SPIE Defense, Orlando, FL, April 24-29, 2011.

[10] Banerji, A., Goutsias, J., "A morphological approach to automatic mine detection problems", IEEE Trans Aero Elect
Sys 34:1085–1096, 1998.

[11] Chang’an W., Shouda J., “Automatic Target Detection and tracking in FLIR Image sequences using Morphological
connected operator”, IIH-MSP, 2008, pp. 414-417.

[12] Lewis D., Keller J., “Automatic road finding in FLIR”, CISDA 2012, Otawa, Canada, 2012.

[13] Heikkilä, M. and Pietikäinen, M. (2006), “A Texture-Based Method for Modeling the Background and Detecting
Moving Objects”, IEEE Trans. Pattern Analysis and Machine Intelligence 28(4):657-662.

[14] Ludwig O., Delgado D., Goncalves V., and Nunes U., “Trainable Classifier-Fusion Schemes: An Application To
Pedestrian Detection,” In: 12th International IEEE Conference On Intelligent Transportation Systems, 2009, St.
Louis, 2009. V. 1. P. 432-437.

[15] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines, 2001,
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[16] Popescu, Mihail; Paino, Alex; Stone, Kevin; Keller, James M.; , "Detection of buried objects in FLIR imaging using
mathematical morphology and SVM," Computational Intelligence for Security and Defence Applications (CISDA),
2012 IEEE Symposium on , vol., no., pp.1-5, 11-13 July 2012

[17] Canny, John; , "A Computational Approach to Edge Detection," Pattern Analysis and Machine Intelligence, IEEE
Transactions on , vol.PAMI-8, no.6, pp.679-698, Nov. 1986

http://www.csie.ntu.edu.tw/~cjlin/libsvm

